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Introduction
Let X, Y be two nonempty subsets of the space of all complex sequences and

A = (ank) an infinite matrix of complex numbers ank(n, k = 1, 2, ...). For every
x = (xk) ∈ X and every integer n we write

An(x) =
∞∑
k=1

ankxk

The sequence Ax = (An(x)), if it exists, is called the transformation of x by the
matrix A. We say that A ∈ (X, Y ) if and only if Ax ∈ Y when ever x ∈ X.
If pk > 0 and suppk <∞, we define (see Maddox [1])

l(p) =
{
x :
∑
k|xk|pk <∞

}
c(p) =

{
x : |xk − 1|pk → 0 for some 1

}
c0(p) =

{
x : |xk|pk → 0

}
l∞(p) =

{
x : sup|xk|pk <∞

}
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w(p) =

{
x : 1/n

n∑
k=1

|xk − 1|pk → 0 for some 1

}
If pk = p for all k, then l∞(p), c0(p) = c(p)
l(p) = lp and w(p) = wp

l∞, c and c0 are respectively, the Banach spaces of bounded, convergent and null
sequences.

The purpose of this paper is to characterize the matrices in the classes (l(p), l∞),
(l(p),c),(w(p), c) and (c0(p), c0(q)).

The following notations are used through out for all integers n ≥ 1, we write

Ax = (An(x))

If An(x) =
∑

k ankxk converges for each n.
For any two complex numbers a and b and B > 0
We write

|ab| ≤ B(|a|qB−a + |b|p) (1)

where p > 1 and
1

p
+

1

q
= 1.

For all integers n,m ≥ 1 and N > 1, we write

C(n,N.m, s) =
s∑

k=m

|ank|qkN−qk

where 1 ≤ s ≤ ∞ and
1

pk
+

1

qk
= 1.

We put C(n,N, 1,∞) = C(n,N) and C(N) = sup C(n,N) for every integer N > 1.
Theorem 1: Let 1 ≤ pk < sup pk = H < ∞ for every k. Then A ∈ (l(p), l∞). If
there is an integer B > 1 such that C(B) <∞
Proof: Sufficiency

Let x ∈ l(p) using inequality (1) we see that

|An(x)| ≤ B(C(n,B)) + gH(x) < B(C(B)) + gH(x)

where gH(x) =
∑

k |xk|pk.
Necessity

Let A ∈ (l(p), l∞) but C(N) = ∞ for every integer N > 1. Then
∑

k ankxk
converges for every n and every x ∈ l(p) and each An defined by An(x) =

∑
anxk

is an element of l ∗ (p). Since l(p) is complete and since sup |An(x)| < ∞ on l(p)
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by uniform boundedness principal there exist a number M independent of n and x
a number δ < 1 such that

|An(x)| ≤M (2)

For every x ∈ s[0, δ] and every n, where s[0, δ] denotes the closed sphere in l(p)
with center at the origin 0 = (0, 0, ...) and radius δ. Now choose an integer Q > l
such that

QδH > G

By our supposition we have C(Q) =∞ and so two cases are possible:
Either C(n,Q) <∞ for every n ≥ 1 or there exists n ≥ 1 such that C(n,Q) =∞.
In the first case there exists n ≥ 1 such that C(n,Q) > 2 and there exists k0 > 1
such that

C(n,Q,K0 + 1,∞) < 1

Hence

C(n,Q, l, k0) > 1

In the second case we may choose k0 > 1 such that C(n,Q, l, k0) > 1, so that
in either case there exists n ≥ 1 and k0 ≥ 1 such that

S = C(n,Q, l, k0) > 1 (3)

Define a sequence x = (xk) as follows

xk = δpk/H(sgn ank)|ank|qk−1S−1Q−qk/pk for 1 ≤ k ≤ k0,

= 0 for k > k0

It is easy to see that g(x) ≤ δ and that

|An(x)| = s−1Q
∑
|ank|qkQ−qkδH/pk ≥ QδH > G

Which contradicts (2) and completes the proof.
Theorem 2:

Let p = pk be as in theorem 1, then A ∈ (l(p), c) iff

(i) The condition of theorem 1 hold

(ii) limn→∞ ank = ak for each k.
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Proof
Let l ≤ pk ≤ H <∞ for every k, since ek = {δnk} ∈ l(p).
The necessity of (ii) follows
For the sufficiency observe that for every integer m ≥ 1 and every n we have

C(n,B, 1,m) ≤ C(B) ≤ ∞

Hence
lim

m→∞
lim
n→∞

C(n,B, l,m) ≤ C(B)

i.e. ∑
k

|ak|qkB−qk ≤ C(B)

Therefore the series
∑
akxk and

∑
ankxk.

Converges for every n and every x ∈ l(p). For each x ∈ l(p) we can choose an
integer m ≥ 1 such that

∞∑
k=m+1

|xk|pk < 1

By using the inequality (1) it is easy to check that

∞∑
k=m+1

|ank − ak||xk| ≤ 2B(2C + 1)

(
∞∑

k=m+1

|xk|pk
) l

H

It follows that
lim
n→∞

∑
k

ankxk =
∑
k

akx
k

This completes the proof.
Theorem 3:

Let 0 < p < 1. then A ∈ (wp, c) if and only if

(i) limn→∞ ank = ak (k fixed)

(ii) M(A) = sup
∑

2r/pAl
r(n) < ∞, nr = 0, where Al

r(n) = max|ank| for each n,
the maximum value is taken for r, k such that 2r ≤ k < 2r+1

Proof: Sufficiency
Suppose that the condition hold, since

M(A) = sup
∑

2r/pAl
r(n) <∞, nr = 0
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where Al
r(n) = max|ank| for each n, the maximum is taken for k such that r,

2r ≤ k < 2r+1

∞∑
k=1

|ankxk| =
∞∑
r=0

∑
r

|ankxk|

≤
∞∑
r=0

(∑
r

|ankxk|p
)1/p

≤
∞∑
r=0

Al
r(n)2r/p||x||1/p

≤M(A)||x||1/p <∞

Whenever x ∈ wp so the series
∞∑
k=1

ankxk is absolutely convergent for each n.

Let 1/p+ 1/q = 1, 0 < p < 1, so that q < 0. Then for any positive integer ’s‘ and
for any m ≥ 2s we have for all n,

∞∑
k=m

|ank| ≤
∞∑
r=s

∑
r

|ank| ≤
∞∑
r=s

Al
r(n)2r ≤M(A)2s/q

Since q < 0 it follows that
∑

k=1 |ank| is uniformly convergent in n then this together
with (i) implies that

lim
n→∞

∑
k

ank =
∑
k

ak (4)

Now take x ∈ wp and suppose

1/n
n∑

k=1

|xk − l|p → 0(n→∞)

Hence we write∑
k

ankxk =
∑
k

akxk + l
∑
k

(ank − ak) +
∑

(ank − ak)(xk − l) (5)

and from (i) and (ii) imply

∞∑
r=0

2r/pmax|ak| ≤M(A)
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Hence
∑

k |akxk| <∞ and the last sum in (5) has limit zero as n→∞.
Thus by (4) we now have∑

k

ankxk →
∑
k

akxk as n→∞, for every x in wp

This proves the sufficiency when 0 < p < 1

Necessity
The necessity of (i) is trivial and we now prove the necessity of (ii).

Suppose that An(x) =
∑

k ankxk exists for each n ≥ 1 whenever x ∈ wp. Then for
each n and each r ≥ 0 the functional frn(x) =

∑
r ankxk are in the dual space wp,

they are trivially linear and continuous since

|frn(x)| ≤ Al
r(n)2r/p||x||1/p

It follows from Banach-Steinhaus theorem that for each n,

lim
s

s∑
r=0

frn(x) = Anx is in wp

Hence
|An(x)| ≤ ||An|| ||x||1/p (6)

for each n we take any integer s > 0 and define x ∈ wp by xk = 0 for k ≥ 2s+1,

xN(r) = 2r/psgn an;N(r), xk = 0(k 6= N(r)) for 0 ≤ r ≤ s,

where N(r) is such that |an;N(r)| = max|ank|
By (6) we get

s∑
r=0

2r/pAl
r(n) ≤ ||An||

Hence for each n,
∞∑
r=0

2r/pAl
r(n) ≤ ||An|| <∞ (7)

Now the argument used in the sufficiency to prove that the series defining An(x)
was absolutely convergent gives

|An(x)| ≤
∞∑
r=0

2r/pAl
r(n)||x||1/p
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So that

||An|| ≤
∞∑
r=0

2r/pAl
r(n) (8)

From (7) and (8) imply

||An|| =
∞∑
r=0

2r/pAl
r(n)

By Banach-Steinhaus theorem, the existence of lim An(x) on wp implies that

sup ||An|| = sup
∞∑
r=0

2r/pAl
r(n) <∞

which is (ii). This complete the proof.
Theorem 4:

Let p be any positive sequence and q be a bounded sequence. Then a matrix
A = (ank) ∈ (c0(p), c0(q)) iff

(i) |ank|qn → 0 (n→∞, each k)

(ii) lim
N

lim
n

sup

(∑
k

|ank|N−1/pk
)qn

= 0

Proof
From (ii) the existence of a positive integer M such that

sup
∑
nk

|ank|M−1/pk <∞ (9)

Let us take H = sup qk and observe that

|ak + bk|qk ≤ c(|ak|qk + |bk|qk)

where c = max(1, 2H−1). For the sufficiency we take ∈> 0 and let x ∈ c0(p). Since
c0(p) is a (proper) subset of l∞ we have ||x|| = sup |xk| <∞.
By (ii) there exist N such that

sup

(∑
nk

|ankN−1/pk|

)qn

<∈ (10)
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Also there exist r such that |xk| < N−1/pk for all k > r. Hence

|An(x)|qn ≤ c

[
||x||qn

(∑
k=1

|ank|qn/H
)]H

+

[∑
k

|ank|N−1/p
]qn

Taking lim sup in this last inequality we see that since q ∈ l∞ (i) and (10) implies
Ax ∈ c0(q)
Necessity:

The necessity of (i) is obtained by taking x = ck we prove the necessity of (ii).
We may suppose since c0(q) = c0(q/H), that sup qk ≤ 1
Now [c0(p), c0(q)][c0(p), l∞] and observe that A ∈ [c0(p), l∞] iff (9) holds for

some integer M.
If p ∈ l∞ then the necessity of the result is readily shown by an application of

the uniform boundedness principle.
Let us denote the lim sup in (ii) by BN , so that the sequence (BM , BM+1, ...)

is decreasing the limit in (ii) certainly exists; suppose if possible that it is equal to
3a, where a > 0, then there exist n(1) > 1 such that∑

k>k(1)

|an(1)k|(M + 1)−1/pk > (2a)1/qn(1)

Hence by (9) there exists k(1) > 1 such that∑
k>k(1)

|an(1)k|(M + 1)−1/pk < (a/4)1/qn(1)

Define
xk = (sgnan(1)k)(M + 1)−1/pk for 1 ≤ k ≤ k(1)

Suppose that n(1) < n(2) < ... < n(i) and k(1) < k(2) < ... < k(i) has been
chosen and that xk has been defined for k ≤ k(i) choose n(i+ 1) > n(i) such that
for n = n(i+ 1) ∑

ki

|ank|(M + i+ 1)−1/pk > (2a)1/qn

and ∑
k=1

|ank|qn < a/4

Next; we choose k(i+ 1) > k(i) such that for n = n(i+ 1)∑
k>k(i+1)

|ank|(M + i+ 1)−1/pk < (a/4)1/qn
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define
xk = (sgn an(i+1)k)(M + i+ 1)−1/pk for k(i) < k ≤ k(i+ 1)

so that x ∈ c0(p), now for n = n(i + 1) write the sum for ankxk over k(i) < k ≤
k(i+ 1)
as ∑

−
∑
i

−
∑

k>k(i+1)

then,

|
∑
1+k(i)

ankxk|qn > 2a− a/4− a/4 = 3a/2 (11)

By (11)

|An(x)|qn > 3a/2− a/4−
(∑

|ankxk|
)qn

≥ 3a/2− a/4− a/4

= a (12)

Since |xk < (M + i+ 1)−1/pk| for k > k(i+ 1). But (12) is contrary to Ax ∈ c0(q).
Hence (ii) is necessary.
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